
Dr Mark Little
Red Hat, Inc.

Open Source Challenges in the Enterprise

(The Alan Turing Institute)

!1

Overview

•What is open source?
•How it probably impacts your daily life
•Challenges open source has faced and still faces
•Close source FUD
•Reliability and security

•How you can get involved
•User
•Contributor

!2

What is open source (software)?

“ Open source software is software with source code
that anyone can inspect, modify, and enhance.

 […] Today, however, "open source" designates a
broader set of values—what we call "the open
source way." Open source projects, products, or
initiatives embrace and celebrate principles of open
exchange, collaborative participation, rapid
prototyping, transparency, meritocracy, and
community-oriented development.”
opensource.com, June 2019

!3

A brief history of time …

!4

In the beginning …

•Before 1980’s heterogeneous environments
encouraged code dissemination
•Personal computing grew through code sharing
•ZX80, Spectrum, BBC Model A/B, Commodore, …

!5

The 1980/1990s

•Richard Stallman launches GNU Project in 1983
•Free Software Foundation in 1986
•Gnu Public Licence (GPL) released in 1989

•Lots of free software typically by Universities
•1991 saw first Linux release
•Taken to heart by academic and research communities
•Playstation 3, Android!

•Term “open source” coined in 1998

!6

The World Wide Web

•CERN httpd released as open source 1991
•List of ALL websites in 1993 captured on one page!
•Huge adoption and kicked off e-commerce, global

use of internet
•Amazon, Google, Twitter, Facebook, …

•Other benefits came later … REST, Web Services/
SOAP
•Heterogeneous interoperability out of the box

!7

3D Map of WWW (circa 2009)
http://www.vlib.us/web/worldwideweb3d.html

!8

!9

Mobile, cloud and language explosion

•Android
•Linux
•Java (-ish)

•EC2
•Linux

•Facebook, Netflix
•More new languages in the last 10 years than

previous 30
•Ruby, Clojure, Ceylon, Scala, Erlang, Lisp, …

!10

Big Data/NoSQL/RDBMS/Data Grids

!11

Artificial Intelligence/Machine
Learning

!12

Things we might assume

•The benefits of open source are obvious
•Open source is competitive with closed source
•Reliability, dependability, performance
•Cost (free versus fee)

•Closed source code consigned to the history books
•Open source is the default option for enterprises

!13

!14

!15

Licence categories

•Copyleft
•Strong (GPLv2, GPLv3, AGPLv3)
•Weak (LGPL, MPL, EPL)

•Permissive (MIT, BSD, Apache License 2.0)

!16

Enterprise adoption of open source

•Typical concerns
•Not enough quality open source code?
•Not broad enough use case coverage?

•Closed source dominated for so long
•FUD versus reality
•“Open source good enough for playing but not enterprise”
•Quality of open source developers versus closed source

•“Where do I start?”

!17

!18

!19

Challenges for open source in the
enterprise?

•Perception versus reality
•Closed source is more dependable?

•Should open source have more challenges?
•Design and implementation
•Skills and understanding of principles

•Hardware provisioning and testing
•“Builds on my laptop"

•Testing at scale
•How to duplicate deployment environments?

!20

Reliability and security

•Closed source “reliability through experts”
•Open source reliability
•“peer reviewed software, which leads to more reliability”
•Stress testing of software is critical

•Closed source “security through obscurity”
•Or even security through not admitting loopholes exist!

•Open source security
•“enables anyone to examine software for security flaws”
•What about exploiting issues?

!21

Compare and contrast

•1988 first internet worm via sendmail and fingerd
•But code availability mitigated the spread

•Apache HTTP more reliable that MSFT IIS
•MITRE 2001 “open-source products have access to

extensive expertise, and this enables the software
to achieve a high level of efficiency”
•Software defects at similar levels but …
•e-Week Labs “FOSS organizations in general respond to

problems more quickly and openly, while proprietary
software vendors instinctively cover up, deny, and
delay.’’

Coverity code analysis
• A four-year research effort on Linux kernel
• Fewer software bugs in it than the industry average

•985 defects in the 5.7 million lines of code
•According to CMU, a typical program of similar size would

usually have more than 5,000 defects

•Another separate study found MySQL had fewer
defects than 200 proprietary programs
•https://tinyurl.com/y5g5bkwx

•“In open source model, code is written with more
care and creativity, because developers are
working only on things for which they have real
passion.” !23

Productisation is crucial

•Few projects are product ready by default
•Not everything in an upstream project should go into

a product
•May be too immature
•May be a feature that doesn't make sense

•Sanitisation of projects is important
•Not everything in a product may have gone

mainstream yet
•Not everything in a project may have been built from

source
!24

Project versus product funnel

!25

(Stress/Production) Testing

•Upstream projects typically focus on unit tests
•Unit tests != QA

•Hardware and software limitations
•Also impacts time to release

•Performance testing similarly
•It's hard to do!

•Be prepared to commit people and hardware

!26

Long term support implications

•Critical systems have long operational lifespans
•Nuclear power - 30 years
•Banking systems - 20 years

•Maintenance has to account for losing the vendor
•Code into escrow but not skills

•Does open source help or hinder?
•Communities can disappear over time too
•But knowledge can be shared from the start

!27

https://opensource.com/resources/
getting-started-open-source

!28

!29

Space exploration!

!30

High Energy Physics

!31

Open Source and Education

•Open source removes artificial barriers for teachers
and students
•No licence fees
•Students can duplicate teaching environments

•Communities around the world collaborate
•Schools and universities

•Developers can help educate the next generation

!32

Beagleboard

!33

!34

Conclusions

•Open source is mainstream
•It has been at the heart of significant waves for 20 years
•Surprising where it’s used!

•It is now typical to see open source driving
developer efforts
•It brings benefits in terms of collaboration, code

quality, immediate feedback on suitability, shared
experiences etc.
•www.opensource.com

!35

