Declarative Distributed Stream Processing
PhD Stage 2 Report

Jonathan Dowland <jon.dowland@ncl.ac.uk>

June 2021

I have been studying part-time towards a PhD since 2017/18. This report marks the
end of Stage 2 (my 4" year of study). In this report I outline the work completed during
this stage, the work remaining and the plan for continuing to completion.

1 Background (2 pages)

1.1 Distributed Stream-Processing

Many modern applications, in domains ranging from smart cities to healthcare, have a
requirement for the timely processing of data arriving at high speed, for example that
generated by sensors in the Internet of Things (IoT). Such systems may need to meet a
range of other requirements, including: reliability; security; energy efficiency, for example
to prolong the battery life of sensors in the field; or privacy, to remove or de-personalise
data prior to transmitting it over open networks.

The combination of requirements, very high data arrival rates, and the desire for
timely processing, makes the design and management of the supporting infrastructure
very challenging. The current generation of IoT tools adopt the principles of stream
processing and are designed around a three-tier architecture: sensors generate data, which
is sent on to a local gateway (e.g. a smartphone or embedded device) to be collated before
being passed on to the Cloud for processing.

However, in some domains it can be beneficial to perform some processing on the
gateway or on the sensors themselves|], to reduce the volume of data sent onwards
to the cloud; or to reduce the frequency with which sensors must invoke their networking
hardware, thus reducing energy expenditure; or to avoid transmitting sensitive data across
public networks, by filtering or anonymising data sets at the point of collection.

1.2 Purely-Functional Programming

Functional Programming (FP) is a software development paradigm where the principle
building blocks of programs are functions|] (as opposed to e.g. abstract objects in
Object-Oriented Programming) and programs are composed declaratively using expres-
sions, rather than imperatively with sequences of statements.

Advocates of FP believe that many of its properties have advantages for the design
and implementation of large and complex software systems|]. Constructing systems
declaratively results in the programmer describing what a system should do, rather than
the minutiae of how the work should be performed.

Purely-functional programming is a variant of FP where the behaviour of functions is
entirely defined in terms of their input arguments and output value and can perform no

other actions (referred to as side-effects). Consequently, purely-functional expressions are
referentially transparent, and can be substituted for any other expression which evaluates
to the same value for the same inputs.

Referential transparency enables equational reasoning, a technique for transforming
functions through a process of substitution by applying laws or rules| -

1.3 Purely-Functional Stream Processing

My research aim is to establish to what extent the advantages of purely-functional pro-
gramming can be applied to the design and operation of a distributed stream-processing
system.

Modern distributed stream-processing systems attempt to separate the functional def-
inition (typically specified as a software program) and the non-functional requirements
(the deployment environment and constraints such as power requirements, network util-
isation limits, etc.). The declarative nature of purely-functional programming allows for
a high degree of abstraction. I will investigate whether this enables the construction of a
system where the user can specify the functional behaviour of the program declaratively
and independent of the deployment and non-functional requirements.

In order to meet non-functional requirements, it may be necessary to adjust the stream-
processing specification provided by the user whilst preserving the functional behaviour.
Equational reasoning is a powerful tool for encoding program transformations and can
be used to build rewriting systems|]. I will investigate whether rewrite rules are
expressive enough to encode and apply useful transformations for stream-processing op-
timisation.

A distributed stream-processing system needs to partition and distribute a stream-
processing definition onto individual nodes. I will investigate whether any facets of purely-
functional programming are particularly beneficial for the design and implementation of
the Partitioner, and how automated partitioning should interact with the Optimiser.

1.4 Foundations

We are exploring an alternative approach: a system whereby the stream processing op-
erations and the non-functional requirements are described declaratively as inputs to an
Optimiser, which automatically determines the most appropriate deployment onto the
available resources, which may include sensors and gateways. Monitoring of the deploy-
ment is used to evaluate the performance of the Optimiser and could also be used for
run-time adaptation. The initial approach (by PhD student Peter Michaldk|)]
used an extended version of SQL as the method of describing the computation.

In contrast, in our project we are exploring using functional programming to describe
the computation. Using the pure functional language Haskell, a prototype has been
developed named “StrloT”]]| where the stream processing is defined in terms of a
restricted set of functional operators with well-understood semantics. This prototype has
two distinct components: Library code to support stream processing in which segments
of the stream are spread across multiple compute nodes; and the Optimiser.

My research will be focussed on the optimiser and deployer (another PhD student
— Adam Cattermole — is working on the stream processing library).

A high-level overview of the StrloT architecture is provided in Figure 1.

2 Work completed (1 page)

2.1 2019-20

The work in this section was completed in academic year 2019-20 and fully described in
my Stage 2/Year 3 interim report|]. What follows here is a brief summary.

I further considered the rewrite rules described in |] and matched some of them
to known categories of stream-processing optimisation|]. I recognised that some
rules caused re-ordering of the stream of events and so were not functionally equivalent,
although they could be useful in situations where re-ordering was not important.

I devised a scheme for encoding program rewriting rules as regular Haskell functions
and implemented them in StrloT. I designed and implemented an algorithm to apply
rules to a stream-processing program. Since the rules do not form a terminating system,
the algorithm applies rules successively up to a user-supplied threshold and then stops.

I spent some time exploring the Template Haskell| | meta- programming system
in order to reason about the parameters supplied to StrloT operators by the user (e.g.
filter predicates). I determined that this was impractical, although I did manage to apply
Template Haskell to improve StrloT$ ease of use.

Automatic partitioning of the stream-processing program. I designed and
implemented an algorithm to generate a list of all possible partitionings of a stream-
processing program. The algorithm encodes a number of limitations on the way in which
operators could be distributed to physical nodes: for example, a "merge" operator must
be placed as the first operator in a Node; A source operator and a sink operator cannot
co-exist on the same Node.

DEBS 2020 paper. Paul Watson, Adam Cattermole and I wrote a paper describing
the work on StrloT to-date and submitted it to the 14** ACM International Conference
on Distributed and Event-based Systems |]. The paper was rejected but we received
very constructive feedback from the reviewers which has informed my plans for the work
remaining.

2.2 Engineering

Much of the last calendar year was spent on further StrloT engineering. The existing
user interface had a number of problems that needed addressing: the user was required
to supply a partition-map alongside the stream-processing program; this partition map
necessarily referenced the operators in the program prior to any optimisation. Opti-
misation could add or remove operators, invalidating the partition map. To avoid this
problem StrloT applied optimisation to the sub-programs after performing partitioning.
This limited the extent to which the optimisation process could rewrite the program and
consequently the impact rewriting could make on its performance. As noted in the review
feedback from our DEBS ’20 paper, StrloT lacked a cost model and so could not evaluate
the performance of optimisation beyond a very simplistic heuristic such as minimising the
number of operators.

I developed a new user-interface for StrloT to which a use need only supply the stream-
processing program and not a hand-written partitioning scheme. Instead, we apply the
automatic partitioning to every rewritten program obtained by applying the rewrite rules,
to obtain a list of program /partition-map pairings. I then developed the framework for a
cost model function which operates on such pairings.

2.3 Cost Model

I spent considerable time studying queuing systems and networks in order to apply them in
developing a cost model for evaluating the performance of stream-processing programs. I
am exploring whether a stream-processing program can be modelled as a queuing network;
properties of the program (and its constituent operators) calculated and those properties
used as part of the costing.

I extended the data types within StrloT to include parameters used in the queuing the-
ory calculations: arrival rates for sources, selectivities for filters and average service times
for all operators. The logical optimiser in particular required significant re-engineering
to account for queuing theory parameters in rewrite rules. Careful decision-making was
needed to answer questions such as: what should the selectivity be of a fused filter oper-
ator?

I extended proof-of-concept code implementing queuing theory calculations to operate
on the StrloT data-types. Finally I wrote an initial cost model function which applied
queuing theory calculations to determine the utilisation of all operators within a stream-
processing program and attempted to minimise the overall utilisation.

3 Work remaining (2 pages)

3.1 Revised DEBS paper

The paper we submitted to DEBS 2020 was rejected but we received some very helpful
feedback from the reviewers. I will re-work the paper, address the concerns raised by the
reviewers and submit to a future conference.

3.1.1 Improved cost model

The most significant problem is the lack of a cost model to demonstrate the effectiveness
of our approach to stream-processing.

I am designing and implementing a cost model based on queuing theory that, when
paired with an appropriate stream-processing program, should yield an interesting result
that demonstrates the value of our approach.

The initial improved cost model will attempt to apply Bin Packing to output a de-
ployment plan that maps logical operators to physical nodes in an attempt to minimize
the number of nodes required.

We derive a queuing theory model from the stream-processing program where each
operator is represented as a Server. From that model we calculate their individual utili-
sations.

The plan maps logical operators to physical nodes such that the maximum number
of operators are assigned to each node without breaching a maximum aggregate utility
threshold which we will choose from experimentation.

3.1.2 Consistent example problem

We did not use a single example problem throughout the paper. We opened with simple
examples in the IoT domain, but switched to alternative problems for later sections. This
was identified as a source of confusion by reviewers.

Our StrloT implementation also lacks an encoding of a stream-processing program
for a real-world problem which is demonstrably improved by the rewriting or partitioning
processes.

I will devise an example stream-processing program within a real-world problem do-
main such that processing it with StrloT results in a clearly improved program (in terms
of a non-functional requirement of relevance to the domain). I will then use this example
program consistently throughout the revised paper.

3.1.3 Design justification

We did not sufficiently explain the rationale behind some of our design choices, such as
the use of purely-functional programming, Haskell as the implementation language, or the
choice of the restricted operators from which users can compose their programs. Some
reviewers were unsure what was novel about our approach, pointing out that the choice
of operators are common to many existing systems.

Some of these issues can be addressed by revising the existing material to make justifi-
cations more clear. For example, our Logical Optimiser is only possible due to the choice
of a purely-functional language.

I will expand the comparison to existing stream-processing systems in use in the field.
To support this I will revisit surveying all such systems and their relevant properties.

Description of the
Computation

Non-Functional
E Catalogue
Requirements

Optimiser]7

==Y
i1 G D

Figure 1: StrloT architecture diagram

3.2 Further cost models

The immediate plans for a Cost Model are relatively modest and intended to quickly
demonstrate the efficacy of StrloT for the revised DEBS paper. Further refined mod-
els could be developed to reason about other non-functional requirements or to address
whether the assumptions of the queuing theory calculations hold.

Other non-functional requirements include constraints on bandwidth between physical
nodes by considering the size of event data in conjunction with the rate of events being
transferred.

The plan relies upon a queuing theory model which has a set of assumptions that
must hold for the calculations to be valid. These include constraints on the distribution of
arrival rates of events throughout the network. Some of the stream-processing operators,
such as filters and windowing, can break these assumptions. Further work may include
exploring chains of queuing networks, or Kingsman correction,

3.3 Paper on derivation of rewrite rules

I plan to write a separate paper based on the work described in [], Section "Deriva-
tion of stream rewriting rules" and encoding and categorisation described in [],
Section 2.1.

Throughout the last Stage I prioritised preparing the DEBS paper and the elements
of my work that were required to support it. Work on a rewrites paper was on hiatus. I
did return to my notes on rewrite rules from time to time as and when my main worked
touched on that area or when I had a realisation about a rewrite rule or their properties.

The most significant new work on rewrite rules was beginning to map each rule to a
category of known stream-processing optimisations|]; describe where some rewrite
rules cause re-ordering of the input events and recognising that the flexibility afforded to
user-supplied windowing functions made analysis of windowing difficult.

One area to expand on is to begin analysis of specific window-maker functions supplied
with StrloT (sliding or non-overlapping windows based on event times or number of
events) as we can reason further about their behaviour than other unknown, user-supplied
functions.

3.3.1 QuickSpec

QuickSpec|] is a system for discovering rules and laws from a set of pure functions.
It would be interesting to see whether QuickSpec or a similar tool could be used to

derive further logical rewrite rules that I did not discover in my systematic operator
comparison| -

4 Plan (2 pages)

My main focus in the last Stage was the preparation of our Paper for DEBS 2020 ("Paper
#1'" in my original plan|). I found it especially effective (and motivating) to
organise my work towards that milestone. I’m therefore structuring my remaining work
around similar milestones which are described below.

The broad outline of my plan is summarized in the GANTT chart in Figure 2.

4.1 Plan review

When I wrote my Plan in June 2019 I tried to consider all possible risks to the project,
but I failed to consider an international Pandemic, which has had a significant impact on
my work. For health reasons, following Government advice, I spent most of 2020 isolating
together with my immediate family. I am very fortunate that I was able to continue PhD
work during this time, although it was (and remains) very difficult to predict how much
time I will be able to assign to PhD studies on a week-by-week basis.

By this point in time, my original plan forecast that Implementation and Testing work
would be complete, and two papers written.

Implementation is largely complete, although I expect a continued stream of low-level
maintenance work and bug fixing to continue throughout the remaining time. An initial
Cost Model is in place. The bulk of any further implementation work will be on improved
cost models.

I wrote and submitted one of the two forecast papers, and opted to focus on that work
and pause work on the second paper.

4.2 Milestones
4.2.1 Revised DEBS paper

This milestone collects the majority of the work required for the core of my PhD. An
important initial task is to select the conferences or journals to target and determine
the relevant deadlines. Assuming we target DEBS 2022: Submission deadline is usually
February /March for the conference taking place the following June/July. Working on
this basis I have up to approximately 6 months (Jul 2021 to Feb 2022) to complete the
supporting work and write the paper.

4.2.2 Rewrite rules paper

As discussed in Section 3.3, I plan to write up my work on program rewriting rules. This
is a lower priority than the revised DEBS paper as the relevant work that contributes to
the core of my PhD is already complete. I have enough material to form the basis of this
paper, but depending on the rate of progress of my core objectives, and whether I choose
to pursue an extension activity in the area of rewrite rules, the scope of this paper could
be expanded.

In common with the revised DEBS paper, I shall first identify the conferences or
journals I plan to submit to, in order to establish a submission deadline to work to.

4.2.3 Further cost models

As described in Section 3.2, there are a number of avenues for improving the cost model.
Which route to take depends upon how well work goes on the initial cost model and

queuing theory and whether our simple cost model to be described in the revised DEBS
paper is sufficient to publish some results.

01

> ~—
GAn;Jrn-;I;m » '... 2019 ‘2020 ‘2021 —_— ‘2022 I2023 =
.—- P Apr May Jun Jul Aug Sep Oct Now IDec Uan IFeb ‘Mar IApr ‘May Ijun Im ‘Aug ISED Io:t INUV IDec ‘Jan IFeb IMar ‘Apr ‘May IJun IJu\ IAug ‘SED ‘Oct INDV IDE: Uan ‘Feb IMar IApr IMay ‘Jun ‘Jul IAug ‘Sep ‘O:t ‘Nuv ‘DE: Ijan ‘Feb ‘Mar IApr IMay Uun IJuI
Name ‘ Begin d...| End date |
© Stagel 25/09f... 02/07f.. T TTTTR———
@ Stage 1 Begins 25/09/... 25/09/...
@ Stage 1 Progression Pr... 03/07/.. 03/07/.. +
@ Stage 1 Progression Re... 07/06/... 07/06/... *
@ write slprog report 17/05/... 07/06/... ./
@ prepare report present... 10/08/... 02/07/... | |
@ Stage 2 23/09/... 02/07/... |
@ Stage 2 Begins 23/09/... 23/09/.. *
@ Year 3 interim report 19/05/... 30/061... | m—
© Stage 2 Progression Re... | —
@ Stage 3 |
*

@ Stage 3 Begins

@ Submission target
@ Year 5 interim report
design

implement

test

results & writeup
Paper #1

Paper #2

Paper #3

Paper #4

03/07/...

03/07/...

03/03/...
09/10f...

02/08,

01/07/...
01/07/...

08/06/...
31/124...
31/12
25/11/...
23/114...

Figure 2: Project GANTT Chart

5 Thesis Outline (1 page)

Early on in my research I focussed on the logical optimiser aspect of the architecture and
attempting to prove its value has become the focus of my PhD.

The rewrite rules, their derivation, analysis and applying them to stream-processing
programs is one main piece of work that is complemented by demonstrating their effec-
tiveness with a robust cost model grounded in a sound theory.

My draft thesis outline below reflects the importance of those two main aspects of my
work.

5.1 Draft outline
1. Abstract

2. List of Research Outputs
3. Background

3.1. Stream-processing systems
3.2. Purely-Functional programming
3.3. StrloT architecture overview

3.4. Queuing theory
4. Program rewriting
5. Cost Model
6. Results
7. Conclusion

7.1. Thesis summary
7.2. Contributions

7.3. Future research directions

8. Appendices

11

6 Research Outputs (1 page)

6.1 DEBS 2020 paper submission

Paul Watson (my supervisor), Adam Cattermole and I wrote and submitted a paper to
the 14" ACM International Conference on Distributed and Event-based Systems | -

The paper is an overview of the StrloT system and work completed to-date. My main
contribution is the section on logical optimisation and deployment.

During the process of writing the paper we decided that we would be unable to com-
plete the work needed to implement a Cost Model into our proof-of-concept system in the
time available to us before the submission deadline. For this reason we instead focussed
on ensuring the other components were completed and functioning to a high standard.

6.2 StrloT open source software

The primary output from my work so far is the research stream-processing platform
StrloT, which is open source software. I have made many contributions to StrloT within
this stage, which have been organised into 36 separate GitHub "Pull Requests'| -

6.3 Personal blog posts

In order to practice technical writing, explore how to summarize and present the area of
focus at a given time and to get early feedback from relevant online communities, I have
been blogging about my PhD work. In this Stage I have written ten blog posts|]-
These have attracted some useful comments and suggestions in particular from the Haskell
functional-programming community. On three occasions my blog posts were picked up
and re-broadcast by "Haskell Weekly News', a popular community newsletter.

6.4 PhD Poster Session

I prepared and submitted a poster to the School of Computing PhD candidates poster
session in 2019[]. I adopted the "Better Poster" format]], substituting the
"main finding" as the aspect given the highest priority for my research question, which is
more fitting for the stage of my research.

6.5 Short presentation for Dr. Paul Ezhilchelvan

I began working with Dr. Paul Ezhilchelvan as I started exploring Queuing Theory as
the theoretical underpinnings for a cost model. I prepared a short, specific presentation
for Dr. Ezhilchelvan which aimed to provide a brief introduction to the design of StrloT
and how I was attempting to its concepts into queuing theory.

12

References

[aut20] StrloT authors. StrloT. 2020. URL: https://github.com/striot/striot.

[Bir14] R. Bird. Thinking Functionally with Haskell. Cambridge University Press,
2014. 1sBN: 9781107087200. URL: https://books.google.co.uk/books?id=
B4RxBAAAQBAJ.

[Cup89] John R. G. Cupitt. “The Design and Implementation of an Operating System
in a Functional Language (Miranda)”. AAIDX92465. PhD thesis. Canterbury,
UK: University of Kent at Canterbury, 1989.

[Dow19a] Jonathan Dowland. Declarative Distributed Stream Processing. PhD Stage 1
Progression Report. 2019. URL: https://jmtd.net/log/phd/dowland_phd_
stagel_progression_report.pdf.

[Dow19b] Jonathan Dowland. PhD Poster. 2019. URL: https : // jmtd . net / phd/
poster/.

[Dow20] Jonathan Dowland. Declarative Distributed Stream Processing. PhD Stage
2 Year 1 Report. 2020. URL: https :// jmtd . net /log/phd _year _3_
progression/.

[Dow2la] Jonathan Dowland. PhD blog posts in Stage 2. 2021. URL: https://jmtd.
net/phd/stage2/.

[Dow21b] Jonathan Dowland. StrloT Pull Requests by Jonathan Dowland between 2019-
07-01 and 2021-07-01. 2021. URL: https://github.com/striot/striot/
pulls?7q=1is%3Apr+is’ 3Amerged +created’3A2019-07-01. .2021-07 -
Ol+author’3Ajmtd.

[Hir+14] Martin Hirzel et al. “A Catalog of Stream Processing Optimizations”. In:
ACM Computing Surveys (CSUR) 46 (Mar. 2014). DOI: 10.1145/2528412.

[Mor19] M. A. Morrison. #betterposter. 2019. URL: https://osf.io/ef53g.

[MW17] Peter Michalak and Paul Watson. “PATH2iot: A Holistic, Distributed Stream
Processing System”. In: 2017 IEEE International Conference on Cloud Com-
puting Technology and Science (CloudCom). IEEE. 2017, pp. 25-32.

[PTHO1] Simon Peyton Jones, Andrew Tolmach, and Tony Hoare. “Playing by the
rules: rewriting as a practical optimisation technique in GHC”. In: ACM SIG-
PLAN. Sept. 2001. URL: https://www.microsoft.com/en-us/research/
publication/playing-by-the-rules-rewriting-as-a-practical -
optimisation-technique-in-ghc/.

[Sma+17] Nicholas Smallbone et al. “Quick specifications for the busy programmer”. In:
Journal of Functional Programming 27 (2017), e18. DOI: 10.1017/50956796817000090.

[SP02] Tim Sheard and Simon Peyton Jones. “Template meta-programming for Haskell”.
In: Oct. 2002, pp. 1-16. URL: https : //www . microsoft . com/en-us/
research/publication/template-meta-programming-for-haskell/.

[Var20] Various. 14th ACM International Conference on Distributed and Event-based
Systems. 2020. URL: https://2020.debs.org/.

13

https://github.com/striot/striot
https://books.google.co.uk/books?id=B4RxBAAAQBAJ
https://books.google.co.uk/books?id=B4RxBAAAQBAJ
https://jmtd.net/log/phd/dowland_phd_stage1_progression_report.pdf
https://jmtd.net/log/phd/dowland_phd_stage1_progression_report.pdf
https://jmtd.net/phd/poster/
https://jmtd.net/phd/poster/
https://jmtd.net/log/phd_year_3_progression/
https://jmtd.net/log/phd_year_3_progression/
https://jmtd.net/phd/stage2/
https://jmtd.net/phd/stage2/
https://github.com/striot/striot/pulls?q=is%3Apr+is%3Amerged+created%3A2019-07-01..2021-07-01+author%3Ajmtd
https://github.com/striot/striot/pulls?q=is%3Apr+is%3Amerged+created%3A2019-07-01..2021-07-01+author%3Ajmtd
https://github.com/striot/striot/pulls?q=is%3Apr+is%3Amerged+created%3A2019-07-01..2021-07-01+author%3Ajmtd
https://doi.org/10.1145/2528412
https://osf.io/ef53g
https://www.microsoft.com/en-us/research/publication/playing-by-the-rules-rewriting-as-a-practical-optimisation-technique-in-ghc/
https://www.microsoft.com/en-us/research/publication/playing-by-the-rules-rewriting-as-a-practical-optimisation-technique-in-ghc/
https://www.microsoft.com/en-us/research/publication/playing-by-the-rules-rewriting-as-a-practical-optimisation-technique-in-ghc/
https://doi.org/10.1017/S0956796817000090
https://www.microsoft.com/en-us/research/publication/template-meta-programming-for-haskell/
https://www.microsoft.com/en-us/research/publication/template-meta-programming-for-haskell/
https://2020.debs.org/

	Background (2 pages)
	Distributed Stream-Processing
	Purely-Functional Programming
	Purely-Functional Stream Processing
	Foundations

	Work completed (1 page)
	2019-20
	Engineering
	Cost Model

	Work remaining (2 pages)
	Revised DEBS paper
	Improved cost model
	Consistent example problem
	Design justification

	Further cost models
	Paper on derivation of rewrite rules
	QuickSpec

	Plan (2 pages)
	Plan review
	Milestones
	Revised DEBS paper
	Rewrite rules paper
	Further cost models

	Thesis Outline (1 page)
	Draft outline

	Research Outputs (1 page)
	DEBS 2020 paper submission
	StrIoT open source software
	Personal blog posts
	PhD Poster Session
	Short presentation for Dr. Paul Ezhilchelvan

